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The crossover from flocculation to gelation in the two-dimensional colloidal aggregation induced by
an external alternating electrical field is experimentally studied. It is shown that the crossover is accom-
panied by a sharp percolation transition of the aggregated particles at threshold p, =0.42. The scaling
properties of clusters are analyzed in terms of percolation theory. The fractal dimension is found to in-
crease from 1.50 to 1.75 with the particle concentration p increasing, and then to saturate for p > p.. The
results show a similarity to the standard percolation in the scaling behavior, but some exponents are

different.

PACS number(s): 82.70.Dd, 64.60.Ak, 05.40.+j

The aggregation of diffusing particles or atoms to form
large clusters is a common phenomenon in diverse natu-
ral and synthetic processes, and has been extensively
studied both theoretically and experimentally since the
introduction of the concept of fractal and critical scaling
[1-4]. Studies to date have focused mainly on aggrega-
tion in the limit of extreme low concentration, i.e., the
flocculation regime. It has been demonstrated that struc-
tures produced by irreversible aggregation are fractals,
with the fractal dimension being 1.45 in the diffusion-
limited case (DLCA) and 1.50 in the reaction limited case
(RLCA) in two dimensions [4].

If the initial particle concentration is increased, the ag-
gregation process will mix with the percolation process,
and this should result in a crossover of the system from
flocculation to gelation regimes, where a sol-gel transition
takes place at a finite time 7,; that is, an infinite cluster
spanning the system occurs. Computer simulations in
two dimensions show that the fractal dimension of clus-
ters at high density is 1.75%0.07, which is different not
only from that in flocculation but also from that of the
infinite cluster in percolation. So far, the coeffect of par-
ticle concentration and aggregation has been scarcely
studied [5,6], and is less than well understood; e.g., little
is known about the crossover, the scaling characteristics
of the spanning cluster, etc.

In this paper, we present experimental results about
the effect of the particle concentration on the two-
dimensional aggregation induced by an alternating elec-
trical field, which may lead to insight into the aggrega-
tion process at different concentrations, and into percola-
tion of attractive aggregated particles. Geometrical
features of the aggregated particles at different concentra-
tions p are analyzed in terms of the scaling theory of per-
colation. It is shown that the aggregated patterns under-
go a percolation transition at a threshold p,=~0.42, i.e.,
the crossover of the system from flocculation to gelation
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is a sharp transition. We also calculate the probability
Py(p) of particles in the largest cluster, and show that
near p, Py(p)~(p —p,)? for p >p. with the exponent
B~=0.15, which is close to that value in the two-
dimensional percolation process. Below p., by studying
the clusters with the radius-of-gyration method, we find
that the fractal dimension changes approximately con-
tinuously from 1.50 to 1.75, with p increasing from 0.20
to p.. Above p., the finite cluster and its backbone (the
infinite cluster without all dangling bonds) are shown to
be self-similar on length scales up to a correlation length
& with fractal dimensions ~ 1.75 and 1.63, but homogene-
ous on larger length scales than £. These results indicate
that the scaling behavior of the percolation transition ob-
served during the crossover is analogous to the standard
percolation; only some scaling exponents are different.

The experimental setup is the same as previous [6—-8].
Briefly, the monodisperse polystyrene colloidal suspen-
sion, which was synthesized by us through two-step swol-
len emulsion polymerization according to Ref. [9], is
confined between two glass slides with conductive coat-
ings, forming a two-dimensional system. By applying an
external alternating electrical field perpendicular to the
cell, one can modify interparticle forces by changing the
frequency and strength of the field, and cause particles to
aggregate if the frequency is in the range from several
hundred Hz to several ten kHz. The aggregation process
is observed in situ and recorded in tapes or photos for
latter image processing through an optical microscope
matched with a video system or a camera. The experi-
mental conditions are summarized as follows: the cell is
50 pm in thickness and of about 1X1 cm? in area, the
particle diameter is 1.4 um, the field frequency 1.5 kHz,
the field strength 0.55 V/per 50 um, and the particle con-
centration p (defined as the area fraction of particles in
pictures) varies from 0.2 to 0.8 [10].

The interparticle interaction induced by the external
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field has been addressed by us [11]. It was demonstrated
that the electrical-field-induced interparticle forces are
dependent mainly on the field frequency and the field
strength. Accordingly, it is an advantage of the system
that only the effect of particle concentration is included
and can be investigated by varying only the particle con-
centration while keeping the same interparticle forces.
Moreover, due to the electrical image interaction between
particles and the cell surface, the particles are restricted
near the cell wall surface, and the particle movability per-
pendicular to the cell surface is highly suppressed while
the lateral movability is nearly unchanged. Therefore the
system is two dimensional, although the cell thickness 50
pm is rather larger than the particle diameter.

Typical photographs of aggregated particles are shown
in Fig. 1. It can be seen that on small scales particles
close pack, forming a triangular lattice; on larger scales,
however, the external structures of clusters are irregular.
Figure 1(a) with p=0.24 is far below the threshold, and
clusters are all finite and droplike. Figure 1(b) with
p=0.39 is near the threshold, and clusters are stringy or
ramified and still finite. Figure 1(c) with p=0.43 is just
above the percolation threshold, and the largest cluster
connects two sides. Figure 1(d) with p=0.48 is far above
threshold, and almost all particles are in the networklike
spanning cluster. Evidently the increase of particle con-
centration has resulted in a percolation transition in the
aggregated particles, or that the system crosses over from
nongelling to gelling regimes.

The standard percolation (SP) transition, signaling the
sudden occurrence of an infinite cluster spanning the sys-
tem, is a kind of geometrical transition, and mathemati-
cally equivalent to a second order phase transition
[12,13], and it is static and has only one parameter, the

FIG. 1. Typical photos of aggregates at different initial con-
centrations under the field ¥=0.55 V. (a) p=0.24, (b) p=0.38,
(c) p=0.43, and (d) p=0.48.

particle concentration p. The order parameter in per-
colation is the percolation probability P (p), defined as
the probability that a randomly chosen site belongs to an
infinite cluster that will percolate the system. Note that
the probability for a site being occupied is p. Just as the
magnetization in magnetic phase transitions, P _ (p) van-
ishes as a power law near p.P_ (p)~(p —p,)? for p >p,,
where the critical exponent 3 is shown 8=5/36=0.14
and universal in two dimensions. Another essential prob-
lem in percolation is the cluster geometry, since many
physical properties are associated with it. Below p,, the
scaling theory argues that finite clusters generally obey
N ~RgD " with the exponent D'=1.5. Computer simula-
tions have confirmed this, but the exponent is concentra-
tion dependent and increases from 1.5 to 1.75 as p
changes from O to p, [12]. Above p., any clusters of or-
der £ or larger are proved self-similar for length scales L
below the correlation length &, and homogeneous for
L > ¢ just as in other phase transitions. The correlation
length £ divergences at p, with a power law £~ |p —p_|".
Certainly the infinite cluster and the backbone obey this
scaling behavior, or the density of the infinite cluster and
of the backbone contained in a square of size L >>§
should be a constant and should scale as p(L)~L? 2 at
a length scale L <&, where D is fractal dimension. Per-
colation theory predicts the fractal dimension of the
infinite cluster and the backbone to be D=1.89 and
DPBB=1.60, respectively.

However, the percolation in our system is the coeffect
of two parameters: particle density and time (i.e., the ag-
gregation process). For only one sample with a particle
concentration larger than percolation threshold p., the
aggregation of particles is a kinetic process, and an
infinite cluster spanning the system will emerge at some
time ¢, in the aggregation process which indicates a gela-
tion transition. The time ¢, is the gel time (or gel point),
which is dependent on the magnitude of the interparticle
attraction force. At the experimental condition here ¢, is
around 5 min, and the time for whole aggregation process
is around 10 min. A small decrease in ¢, is observed as p
increases. For a series of samples with different concen-
trations, the increase in concentration will result in a per-
colation transition of the final pattern of aggregated par-
ticles. A concentration larger than the percolation
threshold not only implies that an infinite cluster will
occur in the aggregated patterns of particles, but also
means that the aggregation process in this regime will un-
dergo a gelation. Our interest in this paper is focused
mainly on the percolation behavior of the aggregated par-
ticles.

In order to study whether the percolation transition
occurring in our system can be described by the percola-
tion theory, we analyzed all these features of the aggre-
gated patterns. At first the pictures are digitized by using
a scanner with a resolution of 240 X240, with three pixels
corresponding to about two particle diameters. Then the
probabilities in the largest cluster Py, i.e., the area frac-
tion in the largest clusters, are calculated as a function of
particle concentration p, and the results are shown in Fig.
2. Another series of data at the field strength 0.80 V per
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FIG. 2. The probability Py(p) of the area fraction in the larg-
est cluster as a function of the particle concentration. The ar-
row shows the threshold p, =0.42. A, V=0.55 V; O V=0.80.
The solid line is a power fit Py~(p —p.)? to A and O data
points near p,, and the inset is a log-log plot of Py vs p —p..

50 um are also presented. It can be seen that the date
trend is very similar to that in SP[13]; little deviation can
be seen between data of different field strength. For low
D, Py is negligible. As p is increased, Py increases drasti-
cally near p.=0.42, and then increases almost linearly.
From its definition, P, =lim(Py ) for N becomes infinite.
As will be shown below, the density of the infinite cluster
is approximately a constant for length scale above &, and
also £ is less than the view size, therefore Py for p >p,
here can be approximately considered as the percolation
probability P, . A best fit of the data near p, (p >p,.)
with Py(p)~(p —p, )P yields B=~0.15, which is very close
to the value 3 in percolation theory. The error in Fig. 2
is only mean root deviation of the fit. We need to point
out that since the exponent derived is sensitive to the
value p, used for data fit, and that the value of p, cannot
be accurately determined; thus a large uncertainty may
exist in the 8 obtained.

The external geometries of the clusters in Fig. 1 are
studied by using two methods, respectively for p below
and above p.. For p <p., we investigate the relation be-
tween the mass N and the radius of gyration R, of clus-
ters. One would expect N ~RgD, where D gives the frac-
tal dimension. For p >p,, we study only the scaling of
the mass density of infinite clusters. A square of linear
size L is chosen centered on the infinite cluster, and the
mass M (L) within it is counted to obtain the mass densi-
ty p(L)=M(L)/L? For fractal objects, one expects
p(L)~LP ™4 where D is the fractal dimension.

Typical results for the clusters in Fig. 1 are shown in
Fig. 2. For p <p,, it can be seen in Fig. 3(a) that the clus-
ters obey N ~RgD and the average dimension varies with
the concentration. Interestingly, although the clusters in
Fig. 1(a) are droplike and not fractals, the power law still
exists between N and R,.

For p >p,, it can be seen in Fig. 3(b) that the densities
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of the infinite clusters are scale dependent. A lower
cutoff (about six pixels) is obvious, which is due to the
finite width of the cluster branches. Within the length
scale £~ 66 pixels, the density follows a power law. The
best linear fit yields the fractal dimensions D ~1.66 and
1.78, respectively, for the cluster in Figs. 1(c) and 1(d),
where the errors are mean root deviations of the fits.
Beyond &, the density becomes nearly flat. This fact is
similar to the SP[12,13]; however, the fractal dimension
is different from that in percolation, but close to the com-
puter simulation result of DLCA at high concentration
[5]. In percolation, the correlation length £, which
should be proportional to the average cluster size, does
grow very large as p goes to p.. However, the correlation
length for p >p_ in the figure, obtained from the cross-
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FIG. 3. Scaling analysis of the clusters in Fig. 1. (a) log-log
plot of N vs R,. O, p=0.24; /A, p=0.39. (b) log-log plot of the
density p(L) of the infinite clusters within a box of size L
around an occupied point. M, p=0.43; A, p=0.48. The errors
are the mean root deviation of the fit of data.
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over of the density, is insensitive to the concentration p
and does not diverge near p.. Maybe this is related to the
fluctuation in the density data, or to other reasons.

The fractal dimensions at different particle concentra-
tions are summarized in Fig. 4. In the low-p limit, the di-
mension approaches 1.50, which is close to the value of
RLCA or DLCA in the flocculation limit, and also to the
value 1.50 in SP. As p increases, the fractal dimension in-
creases nearly continuously, and at p. approaches the
value 1.75 of the computer simulation of Kolb and Herr-
man [5], and then saturates for p >p.. The saturation
fractal dimension is estimated about 1.75. The results of
computer simulations of percolation are quite similar:
for p <p,, the average dimension obtained from the mass
radius of gyration relation increases as p increases; for
p >p,, the fractal dimension equals a constant [12].

The geometry of the backbone is also an important
problem in percolation because of its association with
conductivity. If the cluster is considered to be composed
of conductors, the current flows only through the back-
bone. In our experiment, we first cut off the dangling
bonds of the infinite clusters in the pictures by a knife,
and then digitize the pictures obtained. The mass densi-
ties are calculated in the same way as for the infinite clus-
ter, and the results of the backbones of the infinite clus-
ters in Figs. 1(c) and 1(d) are shown in Fig. 5. The
behavior of the data is quite similar to that of the infinite
clusters. Best linear fits of the data in the intermediate
scaling regime yield the fractal dimensions of backbones
DBB~1.60 and 1.65. Taking their average as the fractal
dimension of the backbone, i.e., DBB~1.6340.05, it is in-
teresting that the fractal dimension of the backbone here
is close to that value in SP, although the fractal dimen-
sion of the infinite cluster is different from that in SP.

Cluster-cluster aggregation (CCA) has generally been
considered a good model for studying the sol-gel transi-
tion (polycondensation type) [5]. However, it cannot be
applied here since there is no threshold in it, or its
threshold p, =0. This has been shown by Saxton through
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FIG. 4. Variation of the fractal dimension with the particle
concentration.
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infinite clusters in Figs. 1 (c) (O) and 1(d).

computer simulations [14], and also can be derived from
simple scaling arguments. The cluster movability in
CCA, v~m® (a<0), is not zero, although it becomes
indefinitely small as m grows larger, so there exists only
one cluster at the end of CCA. Considering the scaling
relation between the mass m and size L of cluster m ~L?
(D <d, d is the space dimension), and that the percola-
tion threshold corresponds to an L equal to the system
size Lo, one obtains the percolation threshold
p.=m/L3~LP~9 which is dependent on system size
and tends to zero as L goes to infinity.

The aggregation kinetics should be concerned with un-
derstanding the geometrical results. The two main kinet-
ic effects are the growth and mobility of the clusters that
determine the gelation mechanism. Here we describe the
result for aggregation kinetics through direct observa-
tion. The mobility v of the clusters is observed to be in-
versely proportional to their mass, v~m% (a<0), i.e.,
larger clusters move more slowly. Specifically, clusters of
a mass larger than a maximum of about several ten parti-
cles cannot move. Due to these characteristics of mova-
bility, the aggregation process goes through two stages.
In the first stage, some clusters larger than the maximum,
which are static and unmovable and may be considered
as the nuclei in crystal growth, are formed through clus-
tering of clusters of different sizes. In the later stage,
static large clusters grow by consuming the small clusters
(mainly monomers) between them. When two neighbor
clusters grow large and intersect, a larger cluster forms.
In fact, the infinite cluster is composed of many finite
clusters, therefore the fractal dimension and the scaling
behavior should be different from those in SP. The frac-
tal dimension should equal to that of finite clusters just
below p,.

Based on this, we consider that the CCA model should
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be modified by taking into account the movability
characteristic to explain the percolation observed in this
system. Defining a maximum mass above which the clus-
ter movability equals zero, we have performed computer
simulations in the algorithm of CCA. The preliminary
results indicate that a percolation of aggregates indeed
occurs as the initial concentration increases, and that the
observed crossover may be explained with the modified
CCA model.

Although these results may be only a specific
phenomenon of this system and not universal to other ag-
gregation processes such as aggregation induced by salts
(Refs. [3,4]), where the CCA model applies, they are still
significant at least in two aspects: (1) Percolation is
affected not only by particle concentration, but also by
the aggregation process. The threshold and scaling ex-
ponents of percolation would be different in the presence
of aggregation. (2) These results should be universal for
the modified CCA model where the movability of clusters
of mass larger than one maximum equals zero. Further,
we think this model is relevant to some actual cases. Re-
cent experiments with lateral diffusion of fluorescent lipid
probes have shown a percolation transition during lateral
phase separation in binary lipid mixtures with percola-
tion thresholds smaller than that of SP[15]. Saxton [14]
used MDLA (multicenter diffusion-limited aggregation)

to interpret the percolation. In fact, the centers in
MDLA are equivalent to the nuclei observed in our ex-
periments, thus the MDLA is just a simulation of the
latter step aggregation in our system. However, the gel
process is a kinetic process, and it is physically more
reasonable that clusters of the gel phase are exactly un-
movable as their masses grow larger or above some max-
imum; hence modified CCA may be more relevant.

In conclusion, a detailed structural analysis of the ag-
gregated particles shows that, accompanying the cross-
over from flocculation to gelation, a percolation transi-
tion takes place which cannot be described by the theory
of standard percolation, but the scaling behaviors of clus-
ters are similar to the standard percolation, except that
some scaling exponents are different. These results may
provide a description of the crossover. Clearly more
works are needed with other systems and computer simu-
lations to determine how general these conclusions may
be.
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FIG. 1. Typical photos of aggregates at different initial con-
centrations under the field ¥=0.55 V. (a) p=0.24, (b) p=0.38,
(c) p=0.43, and (d) p=0.48.



